Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Chemical Neuroanatomy, 2-3(30), p. 119-128, 2005

DOI: 10.1016/j.jchemneu.2005.06.004

Links

Tools

Export citation

Search in Google Scholar

Differential effects on [35S]GTPγS binding using muscarinic agonists and antagonists in the gerbil brain

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we studied the in vitro G-protein activation induced by muscarinic agonists using [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) autoradiographic methods to characterize the M(2) and M(4) muscarinic subtypes response. Thus, we describe a detailed characterization of the increases in [(35)S]GTPgammaS binding elicited by carbachol (Cch) and oxotremorine (OXO) (binding in the presence minus binding in the absence of agonist) throughout the gerbil brain (Meriones unguiculatus). For both agonists, the strongest stimulations were found in the superficial gray layer of the superior colliculus, the anteroventral and anteromedial thalamic nuclei, the anterior paraventricular thalamic nucleus, and the caudate-putamen. The comparative study using OXO and Cch suggested that OXO is able to detect differences in the response of structures enriched in M(4) muscarinic receptors, showing a lower potency to stimulate these brain areas. Furthermore, using increasing concentrations of selective M(2) (AF-DX 116) and M(1)/M(4) (pirenzepine) antagonists to inhibit specific Cch- or OXO-induced [(35)S]GTPgammaS binding, significant differences were observed in M(2)-enriched structures but not in M(4)-enriched ones such as the caudate-putamen. These data indicate that appropriate muscarinic agonist stimulation, together with selective inhibition of this effect using functional autoradiography, can be used as a tool to unravel the M(2)- and M(4)-muscarinic subtype-mediated response.