Published in

Elsevier, European Journal of Medicinal Chemistry, 4(46), p. 1140-1146, 2011

DOI: 10.1016/j.ejmech.2011.01.032

Links

Tools

Export citation

Search in Google Scholar

Cobalt bis(dicarbollide) derivatives: Solubilization and self-assembly suppression

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cobalt bis(dicarbollide) derivatives are promising therapeutic agents however their utilization is complicated due to their low solubility and self-assembling in water. Earlier we have shown that their solubility can be increased by using of suitable biocompatible excipients--carriers of pharmaceutically active compounds. Expected mechanism of solubilization was disassembling of self-assemblies and complexation of unimers. Newly our results of time-dependent light scattering study correct this presumption. Poor solubility of all derivatives can be easily improved by using various excipients, however only heptakis(2,6-di-O-methyl)-β-cyclodextrin displays ability to disassemble self-assemblies of all derivatives and suppress their self-assembling. Surprisingly, the other excipients participate on formation of mixed assemblies of derivative/excipient complex or cover assemblies to make them more soluble without decreasing their size.