Dissemin is shutting down on January 1st, 2025

Published in

The Journal of Neuroscience, 20(22), p. 8876-8883

DOI: 10.1523/jneurosci.22-20-08876.2002

Links

Tools

Export citation

Search in Google Scholar

Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

CNS myelin contains axon outgrowth inhibitors, such as Nogo, that restrict regenerative growth after injury. An understanding of the mechanism of Nogo signaling through its receptor (NgR) is critical to developing strategies for overcoming Nogo-mediated inhibition. Here we analyze the function of NgR domains in outgrowth inhibition. Analysis of alkaline phosphatase (AP)-Nogo binding in COS-7 cells reveals that the leucine-rich repeat domain is necessary and sufficient for Nogo binding and NgR multimerization. Viral infection of embryonic day 7 chick retinal ganglion cells with mutated NgR demonstrates that the NgR C-terminal domain is required for inhibitory signaling but not ligand binding. The NgR glycosylphosphatidylinositol domain is not essential for inhibitory signaling but may facilitate Nogo responses. From this analysis, we have developed a soluble, truncated version of the Nogo receptor that antagonizes outgrowth inhibition on both myelin and Nogo substrates. These data suggest that NgR mediates a significant fraction of myelin inhibition of axon outgrowth.