Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Magnetic Resonance, 2(213), p. 404-409, 2011

DOI: 10.1016/j.jmr.2011.09.010

Elsevier, Journal of Magnetic Resonance, 2(160), p. 85-90

DOI: 10.1016/s1090-7807(02)00192-1

Links

Tools

Export citation

Search in Google Scholar

Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9T (250 GHz for g=2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170+/-50 have been observed in 1-13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of approximately 17 have been obtained in two-dimensional 13C-13C chemical shift correlation spectra of the amino acid U-13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.