Published in

Physiological Research, p. S39-S47, 2008

DOI: 10.33549/physiolres.931449

Links

Tools

Export citation

Search in Google Scholar

Importance and prospects for design of selective muscarinic agonists.

Journal article published in 2008 by J. Jakubík ORCID, P. Michal, E. Machová, V. Dolezal
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer s disease. In addition, stimulation of the M1 receptor increases non-amyloidogenic processing of the amyloid precursor protein and thus prevents accumulation of noxious beta-amyloid fragments. The selectivity of classical muscarinic agonists among receptor subtypes is very low due to the highly conserved nature of the orthosteric binding site among receptor subtypes. Herein we summarize some recent studies with the functionally-selective M1 agonist xanomeline that indicate complex pharmacological profile of this drug that includes interactions with and activation of receptor from both orthosteric and ectopic binding sites, and the time-dependent changes of ligand binding and receptor activation. These findings point to potential profitability of exploitation of ectopic ligands in the search for truly selective muscarinic receptor agonists.