Published in

Elsevier, Phytochemistry, 11-12(71), p. 1237-1244, 2010

DOI: 10.1016/j.phytochem.2010.05.013

Links

Tools

Export citation

Search in Google Scholar

The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Melaleuca quinquenervia (Cav) S.T. Blake (broadleaf paperbark) is an Australian tree that has become a serious weed in many places around the world. Two insects Oxyops vitiosa (the melaleuca weevil), and Boreioglycaspis melaleucae (the melaleuca psyllid), which were introduced to Florida as part of a biological control programme, have been very effective in reducing survival and reproduction of this weed. There are two terpene chemotypes of M. quinquenervia; one rich in the sesquiterpene E-nerolidol whereas the other is rich in viridiflorol. Viridiflorol is a strong feeding deterrent for the melaleuca weevil and retards larval development. The larvae therefore avoid the viridiflorol-rich chemotype, in contrast, female melaleuca psyllids prefer to oviposit on these leaves. To identify the molecular basis of these preferences, we isolated and characterised two terpene synthases from the viridiflorol-rich chemotype, both of which utilise farnesyl pyrophosphate and have the same product profile. Chemotypic variation in terpenes in M. quinquenervia is under strong genetic control and the reproductive potential of each chemotype is limited by a different insect. These insects could, therefore, be selective agents for the maintenance of chemotypic variation in M. quinquenervia.