Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Medicinal Chemistry, 18(52), p. 5590-5602, 2009

DOI: 10.1021/jm900298c

Links

Tools

Export citation

Search in Google Scholar

Adenosine A(2A) Receptor-Antagonist/Dopamine D(2) Receptor-Agonist Bivalent Ligands as Pharmacological Tools to Detect A(2A)-D(2) Receptor Heteromers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Adenosine A(2A) (A(2A)R) and dopamine D(2) (D(2)R) receptors mediate the antagonism between adenosinergic and dopaminergic transmission in striatopallidal GABAergic neurons and are pharmacological targets for the treatment of Parkinson's disease. Here, a family of heterobivalent ligands containing a D(2)R agonist and an A(2A)R antagonist linked through a spacer of variable size was designed and synthesized to study A(2A)R-D(2)R heteromers. Bivalent ligands with shorter linkers bound to D(2)R or A(2A)R with higher affinity than the corresponding monovalent controls in membranes from brain striatum and from cells coexpressing both receptors. In contrast, no differences in affinity of bivalent versus monovalent ligands were detected in experiments using membranes from cells expressing only one receptor. These findings indicate the existence of A(2A)R-D(2)R heteromers and of a simultaneous interaction of heterobivalent ligands with both receptors. The cooperative effect derived from the simultaneous interaction suggests the occurrence of A(2A)R-D(2)R heteromers in cotransfected cells and in brain striatum. The dopamine/adenosine bivalent action could constitute a novel concept in Parkinson's disease pharmacotherapy.