Published in

Public Library of Science, PLoS ONE, 11(10), p. e0142490, 2015

DOI: 10.1371/journal.pone.0142490

Links

Tools

Export citation

Search in Google Scholar

Emergence of Asynchronous Local Clocks in Excitable Media

Journal article published in 2015 by Richard Carl Gerum ORCID, Ben Fabry ORCID, Claus Metzner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Excitable media such as the myocardium or the brain consist of arrays of coupled excitable elements, in which the local excitation of a single element can propagate to its neighbors in the form of a non-linear autowave. Since each element has to pass through a refractory period immediately after excitation, the frequency of autowaves is self-limiting. In this work, we consider the case where each element is spontaneously excited at a fixed average rate and thereby initiates a new autowave. Although these spontaneous self-excitation events are modelled as independent Poisson point processes with exponentially distributed waiting times, the travelling autowaves lead collectively to a non-exponential, unimodal waiting time distribution for the individual elements. With increasing system size, a global ‘clock’ period T emerges as the most probable waiting time for each element, which fluctuates around T with an increasingly small but non-zero variance. This apparent synchronization between asynchronous, temporally uncorrelated point processes differs from synchronization effects between perfect oscillators interacting in a phase-aligning manner. Finally, we demonstrate that asynchronous local clocks also emerge in non-homogeneous systems in which the rates of self-excitation are different for all individuals, suggesting that this novel mechanism can occur in a wide range of excitable media.