Dissemin is shutting down on January 1st, 2025

Published in

American Society for Pharmacology and Experimental Therapeutics (ASPET), Drug Metabolism and Disposition, 11(37), p. 2186-2196, 2009

DOI: 10.1124/dmd.109.028027

Links

Tools

Export citation

Search in Google Scholar

Different Effects of Ketoconazole on the Stereoselective First-Pass Metabolism of R/S-Verapamil in the Intestine and the Liver: Important for the Mechanistic Understanding of First-Pass Drug-Drug Interactions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this acute study a pig jejunal intestinal perfusion model with multiple plasma sampling sites and three different administration routes was used to investigate the quantitative contribution of the intestine versus liver to the first-pass extraction of each enantiomer of verapamil (VER). A subclinical dose of ketoconazole (8 mg) was coadministered in the perfusion solution to selectively inhibit gut wall CYP3A. Both enantiomers of VER and its main metabolite norverapamil (NOR) as well as the inhibitor ketoconazole were quantified in all plasma compartments by liquid chromatography-tandem mass spectrometry. The overall first-pass metabolic extraction of VER and the metabolite NOR was shown to be stereoselective with the S-isomer being more extensively extracted. For VER the ratio of R- enantiomer to S-enantiomer was greater in the hepatic vein than in the portal vein (approximately 2.2 versus 1.4), indicating that the stereoselective metabolism of VER in pigs mainly occurs on the first pass through the liver and not in the intestine. Ketoconazole increased the area under the curve from time 0 to 6 h and C(max) of R- and S-VER at least 3-fold in the portal vein, most likely explained by inhibition of gut wall metabolism. Conversely, hepatic extraction was increased because the effect of gut wall metabolism was not observed at the peripheral sampling sites. In conclusion, this study provided novel and more direct information on the contribution of the intestine and the liver, respectively, to the overall first-pass extraction of racemic VER.