Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 14(283), p. 8954-8960, 2008

DOI: 10.1074/jbc.m707424200

Links

Tools

Export citation

Search in Google Scholar

Folding and Misfolding in a Naturally Occurring Circularly Permuted PDZ Domain

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

One of the most extreme and fascinating examples of naturally occurring mutagenesis is represented by circular permutation. Circular permutations involve the linking of two chain ends and cleavage at another site. Here we report the first description of the folding mechanism of a naturally occurring circularly permuted protein, a PDZ domain from the green alga Scenedesmus obliquus. Data reveal that the folding of the permuted protein is characterized by the presence of a low energy off-pathway kinetic trap. This finding contrasts with what was previously observed for canonical PDZ domains that, although displaying a similar primary structure when structurally re-aligned, fold via an on-pathway productive intermediate. Although circular permutation of PDZ domains may be necessary for a correct orientation of their functional sites in multi-domain protein scaffolds, such structural rearrangement may compromise their folding pathway. This study provides a straightforward example of the divergent demands of folding and function.