Published in

Elsevier, Optik - International Journal for Light and Electron Optics, 18(126), p. 1650-1655

DOI: 10.1016/j.ijleo.2015.05.088

Links

Tools

Export citation

Search in Google Scholar

One and two-phonon Raman scattering from nanostructured silicon

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Raman scattering from highly/low resistive nanostructured silicon films prepared by metal-assisted chemical etching was investigated. Raman spectrum of obtained silicon nanostructures was measured. Interpretation of observed one and two-phonon Raman peaks are presented. First-order Raman peak has a redshift and broadening. This phenomenon is analyzed in the framework of the phonon confinement model taking into account mechanical stress effects. Second-order Raman peaks were found to be shifted and broadened in comparison to those in the bulk silicon. The peak shift and broadening of two-phonon Raman scattering relates to phonon confinement and disorder. A broad Raman peak between 900-1100 cm−1 corresponds to superposition of three transverse optical phonons ∼2TO (X), 2TO (W) and 2TO (L). Influence of excitation wavelength on intensity redistribution of two-phonon Raman scattering components (2TO) is demonstrated and preliminary theoretical explanation of this observation is presented.