Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Human Molecular Genetics, 25(24), p. 7286-7294, 2015

DOI: 10.1093/hmg/ddv427

Links

Tools

Export citation

Search in Google Scholar

Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood. Non-syndromic deafness and predisposition to aminoglycoside-induced deafness can be caused by specific mutations in the 12S rRNA gene of mtDNA and are thus maternally inherited traits. The pathophysiology induced by mtDNA mutations has traditionally been attributed to deficient oxidative phosphorylation, which causes energy crisis with functional impairment of multiple cellular processes. In contrast, it was recently reported that signalling induced by 'hypermethylation' of two conserved adenosines of 12S rRNA in the mitoribosome are of key pathophysiological importance in sensorineural deafness. In support for this concept, it was reported that overexpression of the essential mitochondrial methyltransferase TFB1M in the mouse was sufficient to induce mitoribosomal hypermethylation and deafness. At variance with this model, we show here that 12S rRNA is near fully methylated in vivo in the mouse and thus cannot be further methylated to any significant extent. Furthermore, bacterial artificial chromosome (BAC) transgenic mice overexpressing TFB1M have no increase of 12S rRNA methylation levels and hear normally. We thus conclude that therapies directed against mitoribosomal methylation are unlikely to be beneficial to patients with sensorineural hearing loss or other types of mitochondrial disease.