Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Cerebral Blood Flow and Metabolism, 10(28), p. 1722-1732, 2008

DOI: 10.1038/jcbfm.2008.65

Links

Tools

Export citation

Search in Google Scholar

Thrombospondins 1 and 2 are necessary for synaptic plasticity and functional recovery after stroke

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thrombospondins 1 and 2 (TSP-1/2) belong to a family of extracellular glycoproteins with angiostatic and synaptogenic properties. Although TSP-1/2 have been postulated to drive the resolution of postischemic angiogenesis, their role in synaptic and functional recovery is unknown. We investigated whether TSP-1/2 are necessary for synaptic and motor recovery after stroke. Focal ischemia was induced in 8- to 12-week-old wild-type (WT) and TSP-1/2 knockout (KO) mice by unilateral occlusion of the distal middle cerebral artery and the common carotid artery (CCA). Thrombospondins 1 and 2 increased after stroke, with both TSP-1 and TSP-2 colocalizing mostly to astrocytes. Wild-type and TSP-1/2 KO mice were compared in angiogenesis, synaptic density, axonal sprouting, infarct size, and functional recovery at different time points after stroke. Using the tongue protrusion test of motor function, we observed that TSP-1/2 KO mice exhibited significant deficit in their ability to recover function ( P < 0.05) compared with WT mice. No differences were found in infarct size and blood vessel density between the two groups after stroke. However, TSP-1/2 KO mice exhibited significant synaptic density and axonal sprouting deficits. Deficiency of TSP-1/2 leads to impaired recovery after stroke mainly due to the role of these proteins in synapse formation and axonal outgrowth.