Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 20(274), p. 14046-14052, 1999

DOI: 10.1074/jbc.274.20.14046

Links

Tools

Export citation

Search in Google Scholar

Calpastatin Is Up-regulated in Response to Hypoxia and Is a Suicide Substrate to Calpain after Neonatal Cerebral Hypoxia-Ischemia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In a model of cerebral hypoxia-ischemia in the immature rat, widespread brain injury is produced in the ipsilateral hemisphere, whereas the contralateral hemisphere is left undamaged. Previously, we found that calpains were equally translocated to cellular membranes (a prerequisite for protease activation) in the ipsilateral and contralateral hemispheres. However, activation, as judged by degradation of fodrin, occurred only in the ipsilateral hemisphere. In this study we demonstrate that calpastatin, the specific, endogenous inhibitor protein to calpain, is up-regulated in response to hypoxia and may be responsible for the halted calpain activation in the contralateral hemisphere. Concomitantly, extensive degradation of calpastatin occurred in the ipsilateral hemisphere, as demonstrated by the appearance of a membrane-bound 50-kDa calpastatin breakdown product. The calpastatin breakdown product accumulated in the synaptosomal fraction, displaying a peak 24 h post-insult, but was not detectable in the cytosolic fraction. The degradation of calpastatin was blocked by administration of CX295, a calpain inhibitor, indicating that calpastatin acts as a suicide substrate to calpain during hypoxia-ischemia. In summary, calpastatin was up-regulated in areas that remain undamaged and degraded in areas where excessive activation of calpains and infarction occurs.