Published in

American Chemical Society, Journal of Physical Chemistry Letters, 6(1), p. 927-931, 2010

DOI: 10.1021/jz1000193

Links

Tools

Export citation

Search in Google Scholar

DFT Study of Ligand Binding to Small Gold Clusters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The influence of ligands on electronic structure of small gold clusters (Au2, Au4) has been investigated by density functional theory (DFT). Specifically, we study the effect of bonding of four donor ligands (NH3, NMe3, PH3, and PMe3) on cluster geometries and energetics in gas phase and in solution. Performance of five generations of DFT functionals and five different basis sets is assessed. Our results benchmark the importance of the DFT functional model and polarization functions in the basis set for calculations of ligated gold cluster systems. We obtain NMe3 ≈ NH3 < PH3 < PMe3 order of ligand binding energies and observe shallow potential energy surfaces in all molecules. The latter is likely to lead to a conformational freedom in larger clusters with many ligands in solution at ambient conditions. The study suggests appropriate quantum-chemical methodology to reliably model small noble metal clusters in a realistic ligand environment typically present in experiments.Keywords (keywords): small gold clusters; density functional theory; ligand; solvation; basis-set; ground state geometry