Dissemin is shutting down on January 1st, 2025

Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 9(10), p. 1152-1161, 1996

DOI: 10.1101/gad.10.9.1152

Links

Tools

Export citation

Search in Google Scholar

Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome.

Journal article published in 1996 by F. Cornet ORCID, J. Louarn, J. Patte, Louarn Jm, J. M. Louarn
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The recombination site dif is the target on the Escherichia coli chromosome of the site-specific recombinases XerC and XerD. The dif/XerC-D system plays a role during the cell cycle, probably by favoring sister chromosome monomerization or separation. A phenomenon of regional control over dif activity, also analyzed in this issue, is demonstrated here by translocation of dif to a series of loci close to the normal locus. We found that the site is physiologically active only within a narrow zone around its natural position. Competence for dif activity does not depend on the sequence of the normal dif activity zone (DAZ), because delta(dif) deletions larger than the DAZ result in Dif+ bacteria when dif is reinserted at the junction point. Although dif maps where replication normally terminates, termination of replication is not the elicitor. A strain with a large inversion that places dif and its surrounding region close to oriC remains Dif+, even when a Tus- mutation allows replication to terminate far away from it. Preliminary data suggest the possibility that specialized sequences separate the competent zone from the rest of the chromosome. We suspect that these sequences are members of a set of sequences involved in a polarized process of postreplicative reconstruction of the nucleoid structure. We propose that this reconstruction forces catenation links between sister chromosomes to accumulate within the DAZ, where they eventually favor recombination at dif.