Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biochemical and Biophysical Research Communications, 2(280), p. 518-521, 2001

DOI: 10.1006/bbrc.2000.4152

Links

Tools

Export citation

Search in Google Scholar

HCO−3 Ions Increase Mast Cell Sensitivity to Thapsigargin-Induced Ca2+ Entry

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In rat mast cells Ca(2+) entry is modified by the presence or absence of other ions in the external medium. HCO3(-) ions, which modify mast cell degranulation, seemed to modulate the Ca(2+) entry elicited by the intracellular Ca(2+)-ATPase inhibitor thapsigargin. In this work we studied the regulation of the Ca(2+) entry by HCO3(-) and its relationship with exocytosis. The Ca(2+) entry was activated by thapsigargin and Ca(2+) in mast cells bathed by a HCO3(-)-buffered medium or a HCO3(-)-free medium. Both Ca(2+) entry and exocytosis were enhanced by the presence of HCO3(-) ions. Nondegranulated mast cells showed a low Ca(2+) entry either in the presence or absence of HCO3(-). Thus, mast cells with a high [Ca(2+)](i) increase in a HCO3(-)-buffered medium undergo degranulation. In the same cells a second Ca(2+) entry was significantly higher than the first Ca(2+) entry in a HCO3(-)-free medium, while in a HCO3(-)-buffered medium the first and second Ca(2+) entries reached similar [Ca(2+)](i) levels. Although the second Ca(2+) entry is high in a HCO3(-)-free medium, degranulation is still low. Our results demonstrate that HCO3(-) ions increase the capacitative Ca(2+) entry and the sensitivity of mast cells to intracellular Ca(2+) in order to induce degranulation.