Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 5(291), p. F1021-F1032, 2006

DOI: 10.1152/ajprenal.00387.2005

Links

Tools

Export citation

Search in Google Scholar

Angiotensin II mediates downregulation of aquaporin water channels and key renal sodium transporters in response to urinary tract obstruction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The renin-angiotensin system is well known to be involved in the pathophysiological changes in renal function after obstruction of the ureter. Previously, we demonstrated that bilateral ureteral obstruction (BUO) is associated with dramatic changes in the expression of both renal sodium transporters and aquaporin water channels (AQPs). We now examined the effects of the AT1-receptor antagonist candesartan on the dysregulation of AQPs and key renal sodium transporters in rats subjected to 24-h BUO and followed 2 days after release of BUO (BUO-2R). Consistent with previous observations, BUO-2R resulted in a significantly decreased expression of AQP1, -2, and -3 compared with control rats. Concomitantly, the rats developed polyuria and reduced urine osmolality. Moreover, expression of the type 2 Na-phosphate cotransporter (NaPi-2) and type 1 bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) was markedly reduced, consistent with postobstructive natriuresis. Candesartan treatment from the onset of obstruction attenuated the reduction in GFR (3.1 ± 0.4 vs. 1.7 ± 0.3 ml·min−1·kg−1) and partially prevented the reduction in the expression of AQP2 (66 ± 21 vs. 13 ± 2%, n = 7; P < 0.05), NaPi-2 (84 ± 6 vs. 57 ± 10%, n = 7; P < 0.05), and NKCC2 (89 ± 12 vs. 46% ± 11, n = 7; P < 0.05). Consistent with this, candesartan treatment attenuated the increase in urine output (58 ± 4 vs. 97 ± 5 μl·min−1·kg−1, n = 7; P < 0.01) and the reduction in sodium reabsorption (433 ± 62 vs. 233 ± 45 μmol·min−1·kg−1, n = 7; P < 0.05) normally found in rats subjected to BUO. Moreover, candesartan treatment attenuated induction of cyclooxygenase 2 (COX-2) expression in the inner medulla, suggesting that COX-2 induction in response to obstruction is regulated by ANG II. In conclusion, candesartan prevents dysregulation of AQP2, sodium transporters, and development of polyuria seen in BUO. This strongly supports the view that candesartan protects kidney function in response to urinary tract obstruction.