Published in

Nature Research, Nature Communications, 1(5), 2014

DOI: 10.1038/ncomms5916

Links

Tools

Export citation

Search in Google Scholar

A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Two parameters of biological membranes, curvature and lipid composition, direct the recruitment of many peripheral proteins to cellular organelles. Although these traits are often studied independently, it is their combination that generates the unique interfacial properties of cellular membranes. Here, we use a combination of in vivo, in vitro and in silico approaches to provide a comprehensive map of how these parameters modulate membrane adhesive properties. The correlation between the membrane partitioning of model amphipathic helices and the distribution of lipid-packing defects in membranes of different shape and composition explains how macroscopic membrane properties modulate protein recruitment by changing the molecular topography of the membrane interfacial region. Furthermore, our results suggest that the range of conditions that can be obtained in a cellular context is remarkably large because lipid composition and curvature have, under most circumstances, cumulative effects.