Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Letters, 6(40), p. 910, 2015

DOI: 10.1364/ol.40.000910

Links

Tools

Export citation

Search in Google Scholar

Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Capitalizing on the optical absorption of hemoglobin, photoacoustic microscopy (PAM) is uniquely capable of anatomical and functional characterization of the intact microcirculation in vivo. However, PAM of the metabolic rate of oxygen (MRO2) at the microscopic level remains an unmet challenge, mainly due to the inability to simultaneously quantify microvascular diameter, oxygen saturation of hemoglobin (sO2), and blood flow at the same spatial scale. To fill this technical gap, we have developed a multi-parametric PAM platform. By analyzing both the sO2-encoded spectral dependence and the flow-induced temporal decorrelation of photoacoustic signals generated by the raster-scanned mouse ear vasculature, we demonstrated—for the first time—simultaneous wide-field PAM of all three parameters down to the capillary level in vivo.