Published in

American Institute of Physics, AIP Conference Proceedings, 2010

DOI: 10.1063/1.3518278

Links

Tools

Export citation

Search in Google Scholar

Growth optimization of columnar nanostructured diamond films with high electrical performances for SOD applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In today's nanoelectronics devices, thermal management is a major issue to miniaturization. Because of its high thermal conductivity, diamond is an extremely interesting material for heat spreading. SOI (Silicon-On-Insulator) technology suffers of the poor thermal dissipation due to the silicon oxide buried layer. Thus, SOD (Silicon-On-Diamond) based on dielectrical diamond layer is seen as a promising candidate for future bulk solution. Polycrystalline diamond layers of extreme insulating properties (>1014Omega.cm) are successfully synthesis with thickness under 150 nm on 2 inches silicon wafer. However, defects due to the growth and the polycrystal structure are responsible for the detrimental current stimulate by alternative electrical field. The defects activation energies were measured on columnar nanostructured diamond grown under different conditions. Values of 0.56 to 1.56 eV were found for defects in these films and were correlated to the growth parameters as well as the diamond morphology.