Published in

BioMed Central, BMC Biology, 1(13), 2015

DOI: 10.1186/s12915-015-0188-3

Links

Tools

Export citation

Search in Google Scholar

A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Plants under herbivore attack release volatiles that attract natural enemies, and herbivores in turn avoid such plants. Whilst herbivore-induced plant volatile blends appeared to reduce the attractiveness of host plants to herbivores, the volatiles that are key in this process and particularly the way in which deterrence is coded in the olfactory system are largely unknown. Here we demonstrate that herbivore-induced cotton volatiles suppress orientation of the moth Spodoptera littoralis to host plants and mates. Results We found that (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), an induced volatile, is key in herbivore deterrence: DMNT suppressed plant odour- and pheromone-induced behaviours. We then dissected the neurophysiological basis of this interaction. DMNT-responding glomeruli were also activated by other plant compounds, suggesting that S. littoralis possesses no segregated olfactory circuit dedicated exclusively to DMNT. Instead, DMNT suppressed responses to the main pheromone component, (Z)-9-(E)-11-tetradecenyl acetate, and primarily to (Z)-3-hexenyl acetate, a host plant attractant. Conclusion Our study shows that olfactory sensory inhibition, which has previously been reported without reference to an animalâ s ecology, can be at the core of coding of ecologically relevant odours. As DMNT attracts natural enemies and deters herbivores, it may be useful in the development or enhancement of push-pull strategies for sustainable agriculture.