Published in

Wiley, European Journal of Biochemistry, 1-2(251), p. 25-35, 1998

DOI: 10.1046/j.1432-1327.1998.2510025.x

Links

Tools

Export citation

Search in Google Scholar

Activation of STAT6 is not dependent on phosphotyrosine-mediated docking to the interleukin-4 receptor and can be blocked by dominant-negative mutants of both receptor subunits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stimulation of susceptible cells by interleukin-4 leads to activation of signal transducer and activator of transcription (STAT6) through tyrosine phosphorylation and dimerisation, thus directing it to the cell nucleus and rendering it a sequence-specific transcription factor. We functionally reconstituted human interleukin-4 receptor complexes with intracellular truncations of either the alpha or gamma subunits and demonstrate the requirement for elements from both receptor chains for STAT6 activation induced by interleukin-4. By assaying the signalling properties of human interleukin-4-receptor alpha-chain-deletion constructs in both Ba/F3 cells and COS-7 cells, we show that all its cytoplasmic tyrosine residues can be removed without affecting the capability of the receptor complex to trigger STAT6 function with regard to tyrosine phosphorylation, DNA binding, and specific gene transcription. The activation of both STAT6 and janus kinase 1 (JAK1) by the interleukin-4 receptor was completely abolished by disruption of the membrane-proximal 'box1' motif in the interleukin-4 receptor alpha chain. Our results indicate a redundant role of the previously defined phosphotyrosine-containing STAT6 docking site and suggest a mechanism of immediate activation of STAT6 by receptor-associated janus kinase(s). In addition, we demonstrate that dominant negative versions of both interleukin-4 receptor subunits are able to block interleukin-4 induced signalling via STAT6.