American Chemical Society, ACS Photonics, 6(1), p. 538-546, 2014
DOI: 10.1021/ph500096q
Full text: Download
We investigate the far-field and near-field properties of aluminum nanorods fabricated by electron beam lithography and exhibiting plasmonic resonance in the near-infrared region. First, we show that plasmonic modes within nanorod arrays can be tuned by geometrical parameters, allowing one to control the system transparency. Next, the light absorption in this structure is closely examined, and we demonstrate that aluminum has great potential due to its unique interband transition at 800 nm. The roles of the dielectric confinement and the coupling between plasmonic resonance and the interband transition are particularly emphasized, as their adjustment can be used to switch from highly scattering particles to absorbing particles without a significant modification of the plasmonic resonance position. Finally, we image the plasmon-generated local field distribution in the aluminum nanostructures and observe, for the first time, the effect of the interband transition on the near-field behavior. The effect of the dielectric confinement is also numerically investigated, as it is shown to play a significant role in near-field enhancement.