Published in

American Chemical Society, Journal of Proteome Research, 6(4), p. 2435-2441, 2005

DOI: 10.1021/pr050308v

Links

Tools

Export citation

Search in Google Scholar

Proteomic Analysis of Apical Microvillous Membranes of Syncytiotrophoblast Cells Reveals A High Degree of Similarity with Lipid Rafts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Brush borders (microvilli) are cell membrane specialized structures that function mainly as high-throughput absortive/secretory areas. It has been well-established that brush borders are particularly rich in membrane lipids characteristic to lipid rafts. Here, we report 57 proteins identified from microvillous membranes (MVM) isolated from human syncytiotrophoblast cells using an experimental method that avoids the use of nonionic detergents. About 60% of the proteins reported here have been described previously as lipid-raft specific. Well-known lipid raft-markers such as Annexin A2 and alkaline phosphatase were identified. Cytoskeleton structural constituents and proteins related with the control and modulation of the cytoskeletal architecture as well as the regulation of the interaction of cytoskeletal constituents with the cell membrane and particularly with lipid raft domains were found (Ezrin, IQGAP1 and 2, EBP50). Other proteins identified include signal transduction molecules, such as Ras-related protein Rab-1B and Rab-7, and ADP-ribosylation factor 1. Several proteins harbor putative post-translational modifications that favor its localization in the lipid-raft environment, such as GPI (alkaline phosphatase and 5'-nucleotidase) and myristoylation (BASP1 and MARCKS). On the whole, this extensive description demonstrates from the protein composition point of view that brush border membranes are indeed highly enriched in lipid raft microdomains.