Published in

Nature Research, Nature Physics, 5(6), p. 331-335, 2010

DOI: 10.1038/nphys1603

Links

Tools

Export citation

Search in Google Scholar

Experimental demonstration of a hyper-entangled ten-qubit Schr̈odinger cat state

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resources for measurement-based quantum computing and high-precision quantum metrology. However, their experimental preparation has proved extremely challenging. To date, entangled states up to six, eight atoms, or six photonic qubits have been demonstrated. Here, by exploiting both the photons' polarization and momentum degrees of freedom, we report the creation of hyper-entangled six-, eight-, and ten-qubit Schr̈odinger cat states. We characterize the cat states by evaluating their fidelities and detecting the presence of genuine multi-partite entanglement. Small modifications of the experimental setup will allow the generation of various graph states up to ten qubits. Our method provides a shortcut to expand the effective Hilbert space, opening up interesting applications such as quantum-enhanced super-resolving phase measurement, graph-state generation for anyonic simulation and topological error correction, and novel tests of nonlocality with hyper-entanglement. ; Comment: 11 pages, 5 figures, comments welcome