Published in

Wiley Open Access, FASEB Journal, 3(17), p. 376-385, 2003

DOI: 10.1096/fj.02-0478com

Links

Tools

Export citation

Search in Google Scholar

Computational dissection of tissue contamination for identification of colon cancer specific expression profiles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Microarray profiles of bulk tumor tissues reflect gene expression corresponding to malignant cells as well as to many different types of contaminating normal cells. In this report, we assess the feasibility of querying baseline multitissue transcriptome databases to dissect disease-specific genes. Using colon cancer as a model tumor, we show that the application of Boolean operators (AND, OR, BUTNOT) for database searches leads to genes with expression patterns of interest. The BUTNOT operator for example allows the assignment of "expression signatures" to normal tissue specimens. These expression signatures were then used to computationally identify contaminating cells within conventionally dissected tissue specimens. The combination of several logic operators together with an expression database based on multiple human tissue specimens can resolve the problem of tissue contamination, revealing novel cancer-specific gene expression. Several markers, previously not known to be colon cancer associated, are provided.