Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, NeuroImage, 3(56), p. 1588-1597

DOI: 10.1016/j.neuroimage.2011.03.039

Links

Tools

Export citation

Search in Google Scholar

Multimodal imaging of functional networks and event-related potentials in performance monitoring

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The stop-signal task is a prototypical experiment to study cognitive processes that mediate successful performance in a rapidly changing environment. By means of simultaneous recording and combined analysis of electroencephalography and functional magnetic resonance imaging on single trial level, we provide a comprehensive view on brain responses related to performance monitoring in this task. Three types of event-related EEG components were analyzed: a go-related N2/P3-complex devoid of motor-inhibition, the stop-related N2/P3-complex and the error-related negativity with its consecutive error positivity. Relevant functional networks were identified by crossmodal correlation analyses in a parallel independent component analysis framework. Go-related potentials were associated with a midcingulate network known to participate in the processing of conflicts, a left-dominant somatosensory-motor network, and deactivations in visual cortices. Stop-related brain responses in association with the N2/P3-complex were seen with networks known to support motor and cognitive inhibition, including parts of the basal ganglia, the anterior midcingulate cortex and pre-supplementary motor area as well as the anterior insula. Error-related brain responses showed a similar constellation with additional recruitment of the posterior insula and the inferior frontal cortex. Our data clearly indicate that the pre-supplementary motor area is involved in inhibitory mechanisms but not in the processing of conflicts per se.