Published in

IOP Publishing, Physiological Measurement, 7(33), p. 1225-1236, 2012

DOI: 10.1088/0967-3334/33/7/1225

Links

Tools

Export citation

Search in Google Scholar

Influence of crystalloid and colloid fluid infusion and blood withdrawal on pulmonary bioimpedance in an animal model of mechanical ventilation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electrical impedance tomography (EIT) is considered useful for monitoring regional ventilation and aeration in intensive-care patients during mechanical ventilation. Changes in their body fluid state modify the electrical properties of lung tissue and may interfere with the EIT measurements of lung aeration. The aim of our study was to assess the effects of crystalloid and colloid infusion and blood withdrawal on bioimpedance determined by EIT in a chest cross-section. Fourteen anaesthetized mechanically ventilated pigs were subjected to interventions affecting the volume state (crystalloid and colloid infusion, blood withdrawal). Six animals received additional crystalloid fluids (fluid group) whereas eight did not (no-fluid group). Global and regional relative impedance changes (RIC, dimensionless unit) were determined by backprojection at end-expiration. Regional ventilation distribution was analyzed by calculating the tidal RIC in the same regions. Colloid infusion led to a significant fall in the global end-expiratory RIC (mean differences: fluid: -91.2, p < 0.001, no-fluid: -38.9, p < 0.001), which was partially reversed after blood withdrawal (mean differences, fluid: +45.1, p = 0.047 and no-fluid: +26.2, p = 0.009). The RIC was significantly lower in the animals with additional crystalloids (mean group difference: 45.5, p < 0.001). Global and regional tidal volumes were not significantly affected by the fluid and volume states.