Published in

Wiley, Chemistry - A European Journal, 43(21), p. 15421-15427, 2015

DOI: 10.1002/chem.201501413

Links

Tools

Export citation

Search in Google Scholar

Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Graphene-Analogous Boron Nitride as an Efficient Desulfurization Catalyst

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Tungsten oxide nanoparticles (WOx NPs) are gaining increasing attention, but low stabiliity and poor dispersion of WOx NPs hinder their catalytic applications. Herein, WOx NPs were confined in graphene-analogous boron nitride (g-BN) by a one-step, in situ method at high temperature, which can enhance the interactions between WOx NPs and the support and control the sizes of WOx NPs in a range of about 4-5 nm. The as-prepared catalysts were applied in catalytic oxidation of aromatic sulfur compounds in which they showed high catalytic activity. A balance between the W loading and the size distribution of the WOx NPs could govern the catalytic activity. Furthermore, a synergistic effect between g-BN and WOx NPs also contributed to high catalytic activity. The reaction mechanism is discussed in detail and the catalytic scope was enlarged.