Published in

American Society for Microbiology, Journal of Bacteriology, 11(171), p. 6126-6134, 1989

DOI: 10.1128/jb.171.11.6126-6134.1989

Links

Tools

Export citation

Search in Google Scholar

Organization of the murE-murG region of Escherichia coli: Identification of the murD gene encoding the D-glutamic-acid-adding enzyme

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The 2-min region of the Escherichia coli genome contains a large cluster of genes from pbpB to envA that code for proteins involved in peptidoglycan biosynthesis and cell division. From pLC26-6 of the collection of Clarke and Carbon (L. Clarke and J. Carbon, Cell 9:91-99, 1976) plasmids carrying different fragments from the 8-kilobase-pair region downstream of pbpB were constructed and analyzed for their ability to direct protein synthesis in maxicells, to complement various thermosensitive mutations, and to overproduce enzymatic activities. We report the localization of the previously unidentified murD gene coding for the D-glutamic acid-adding enzyme within this region. Our data show that the genes are in the order pbpB-murE-murF-X-murD-Y-murG, where X and Y represent chromosomal fragments from 1 to 1.5 kilobase pairs, possibly coding for unknown proteins. Furthermore, the murE and murF genes, encoding the meso-diaminopimelic acid and D-alanyl-D-alanine-adding enzymes, respectively, may be translationally coupled when transcription is initiated upstream of murE, within the preceding structural gene pbpB coding for penicillin-binding protein 3.