Published in

American Chemical Society, Journal of Physical Chemistry C, 48(118), p. 27657-27663, 2014

DOI: 10.1021/jp508028t

Links

Tools

Export citation

Search in Google Scholar

Influences of Extended Selenization on Cu2ZnSnSe4 Solar Cells Prepared from Quaternary Nanocrystal Ink

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Kesterite Cu2ZnSnSe4 (CZTSe) thin films prepared by the selenization of mechanochemically synthesized Cu2ZnSnS4 (CZTS) nanocrystal films are systematically investigated as a function of the annealing time in terms of the phase purity, microstructure, composition, and device characteristics. It is shown that selenization for an extended time does not cause a noticeable amount of Sn loss or segregation of Zn-rich layers. Thus, the prolonged annealing leads to improvements (reduction) in the shunt conductance, reverse saturation current, and diode ideality factor. However, it also leads to a deterioration of the series resistance, of which influence turned out to overwhelm all of the aforementioned positive effects on the device performance. As a consequence, the CZTSe solar cell exhibits its highest efficiency (5.43%) at the shortest annealing time (10 min). Impedance spectroscopy is demonstrated to be of good use in detecting the change in the back contact of CZTSe solar cells during annealing. The impedance spectra of the CZTSe solar cells are analyzed in association with the microstructures of the back-contact electrodes, demonstrating that the increase in the series resistance is attributed to the formation of the resistive MoSe2 layer.