Elsevier, Biochemical and Biophysical Research Communications, 3(315), p. 546-554, 2004
DOI: 10.1016/j.bbrc.2004.01.092
Full text: Download
Heme plays a central role in oxygen utilization and in the generation of cellular energy. Here we examined the effect of heme and heme deficiency on cell cycle progression and the expression of key regulators in HeLa cells. We found that inhibition of heme synthesis causes cell cycle arrest and induces the expression of molecular markers associated with senescence and apoptosis, such as increased formation of PML nuclear bodies. Our data show that succinyl acetone-induced heme deficiency increases the protein levels of the tumor suppressor gene product p53 and CDK inhibitor p21, and decreases the protein levels of Cdk4, Cdc2, and cyclin D2. Further, we found that heme deficiency diminishes the activation/phosphorylation of Raf, MEK1/2, and ERK1/2-components of the MAP kinase signaling pathway. Our results show that heme is a versatile molecule that can effectively control cell growth and survival by acting on multiple regulators.