Published in

The University of Chicago Press, Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches, 4(78), p. 641-649, 2005

DOI: 10.1086/430229

Links

Tools

Export citation

Search in Google Scholar

Antioxidant Mechanisms of the Nereidid Laeonereis acuta (Anelida: Polychaeta) to Cope with Environmental Hydrogen Peroxide

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Hydrogen peroxide (H(2)O(2)) is a naturally occurring prooxidant molecule, and its effects in the macroinvertebrate infauna were previously observed. The existence of a gradient of antioxidant enzymes activity (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD], and glutathione-S-transferase [GST]) and/or oxidative damage along the body of the estuarine polychaeta Laeonereis acuta (Polychaeta, Nereididae) was analyzed after exposure to H(2)O(2). Because this species secretes conspicuous amounts of mucus, its capability in degrading H(2)O(2) was studied. The results suggest that L. acuta deal with the generation of oxidative stress with different strategies along the body. In the posterior region, higher CAT and SOD activities ensure the degradation of inductors of lipid peroxidation such as H(2)O(2) and superoxide anion (O(2)(.-)). The higher GST activity in anterior region aids to conjugate lipid peroxides products. In the middle region, the lack of high CAT, SOD, or GST activities correlates with the higher lipid hydroperoxide levels found after H(2)O(2) exposure. Ten days of exposure to H(2)O(2) also induced oxidative stress (lipid peroxidation and DNA damage) in the whole animal paralleled by a lack of CAT induction. The mucus production contributes substantially to H(2)O(2) degradation, suggesting that bacteria that grow in this secretion provide this capability.