Published in

Wiley, Liver Transplantation, 8(11), p. 901-910, 2005

DOI: 10.1002/lt.20446

Links

Tools

Export citation

Search in Google Scholar

Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have developed a novel bioreactor based on the observation that isolated porcine hepatocytes rapidly and spontaneously aggregate into spheroids under oscillation conditions. The purpose of this study was to characterize the influence of oscillation frequency (0.125 Hz, 0.25 Hz), cell density (1-10 x 10(6) cells/mL), and storage condition (fresh, cryopreserved) of porcine hepatocytes on the kinetics of spheroid formation. The viability and metabolic performance of spheroid hepatocytes was also compared to monolayer culture. We observed that both fresh and cryopreserved porcine hepatocytes began formation of spheroids spontaneously at the onset of oscillation culture. Spheroid size was directly related to cell density and time in culture, though inversely related to oscillatory frequency. Spheroid formation by fresh porcine hepatocytes was associated with decreased cell death (lactate dehydrogenase release, 1.3 +/- 1.0 vs. 3.1 +/- 0.7 U/mL, P < 0.05) and increased metabolic performance (albumin production, 14.7 +/- 3.3 vs. 4.6 +/- 1.4 fg/c/h, P < 0.0001; ureagenesis from ammonia, 267 +/- 63 vs. 92 +/- 13 micromol/L/h, P < 0.001) compared with monolayer culture. In conclusion, based on the favorable properties of rapid spheroid formation, increased hepatocellular function, and ease of scale-up, the spheroid reservoir bioreactor warrants further investigation as a bioartificial liver for support of liver failure.