Elsevier, Human Immunology, 8(67), p. 643-654
DOI: 10.1016/j.humimm.2006.04.008
Full text: Download
The vitamin D receptor (VDR) and the human leukocyte antigen (HLA) class II complex affect innate and/or adaptive immunity against Mycobacterium tuberculosis. HLA-DRB1, HLA-DQB1, and VDR gene (VDR) polymorphisms were previously associated with tuberculosis (TB) and are here investigated as candidates for TB susceptibility in the Venda population of South Africa. Genomic DNA from 95 patients with pulmonary tuberculosis (PTB) and 117 ethnically matched, healthy controls were typed for HLA-DRB1, DRB3, DRB4, DRB5, DQB1, and VDR polymorphisms FokI, BsmI, ApaI, and TaqI using polymerase chain reaction-sequence specific primers (PCR-SSP). Allele and haplotype frequencies were calculated by the estimator maximum (EM) algorithm. DRB1*1302 phenotype was significantly associated with TB occurring at a significantly higher allele frequency in cases than controls and found in haplotype with DQB1*0602/3. DQB1*0301-0304 phenotype was significantly associated with TB and found in haplotype with DRB1*1101-1121, showing significant linkage disequilibrium (LD) in both cases and controls. Only DRB1*1101-1121-DQB1*05 was significantly associated with TB based on the sequential Bonferroni p value. VDR SNP phenotypes were not associated with TB, but the haplotype F-b-A-T significantly protected from TB. In conclusion, common African HLA-DRB1 and -DQB1 variants, previously associated with protection from malaria and hepatitis B/C virus persistence, predispose the Venda to TB, whereas the proposedly active VDR haplotype F-b-A-T showed significant protection.