Published in

Elsevier, Electrochimica Acta, (121), p. 421-427

DOI: 10.1016/j.electacta.2013.12.075

Links

Tools

Export citation

Search in Google Scholar

Tin oxide - Mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Unique tin oxide-mesoporous carbon (SnO2-CMK-3) composites have been synthesized as platinum nanoparticle electrocatalyst supports for low temperature fuel cell applications. In comparison with state-of-the-art commercial carbon-supported platinum (Pt/C) and pure CMK-3-supported platinum (Pt/CMK-3), Pt/SnO2-CMK3 demonstrated improved Pt-mass and surface area based ethanol oxidation reaction (EOR) activity through half-cell electrochemical investigations, providing a 64.7 and 97.6 mV reduction in overpotential at 100 mA mg(Pt)(-1) upon comparison to Pt/CMK-3 and commercial Pt/C. Furthermore, improvements to the oxygen reduction reaction (ORR) kinetics were observed, with Pt/SnO2-CMK3 providing a kinetic current density of 3.40 mAcm(-2) at an electrode potential of 0.9 V vs RHE. The improved performance of Pt/SnO2-CMK-3 for EOR and ORR was attributed to the beneficial impact of the support properties, along with potential interactions occurring between the support and catalyst particles. Complemented by extensive physicochemical characterization, these unique materials show high promise for application in low temperature fuel cells.