Published in

Elsevier, Signal Processing, 9(89), p. 1683-1693

DOI: 10.1016/j.sigpro.2009.03.018

Links

Tools

Export citation

Search in Google Scholar

Adaptive total variation image deblurring: A majorization–minimization approach

Journal article published in 2009 by João P. Oliveira, José M. Bioucas-Dias, Mário A. T. Figueiredo ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a new approach to image deconvolution (deblurring), under total variation (TV) regularization, which is adaptive in the sense that it does not require the user to specify the value of the regularization parameter. We follow the Bayesian approach of integrating out this parameter, which is achieved by using an approximation of the partition function of the Bayesian prior interpretation of the TV regularizer. The resulting optimization problem is then attacked using a majorization–minimization algorithm. Although the resulting algorithm is of the iteratively reweighted least squares (IRLS) type, thus suffering of the infamous “singularity issue”, we show that this issue is in fact not problematic, as long as adequate initialization is used. Finally, we report experimental results showing that the proposed methodology achieves state-of-the-art performance, on par with TV-based methods with hand tuned regularization parameters, as well as with the best wavelet-based methods.