Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Energy Conversion and Management, (99), p. 50-61, 2015

DOI: 10.1016/j.enconman.2015.04.015

Links

Tools

Export citation

Search in Google Scholar

Semi-continuous feeding and gasification of alfalfa and wheat straw pellets in a lab-scale fluidized bed reactor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Small scale air-blown fluidized bed gasification of alfalfa and wheat straw pellets were conducted for semi-continuous solid feeding and range of operating conditions varied due to the modifications in equivalence ratio (ER) (0.20–0.35) achieved both by varying solid and air input. Alfalfa pellets displayed an improvement in several gasification variables such as gas lower heating value (∼4.1 MJ/Nm3), specific gas yield (1.66 Nm3/kg), cold gas efficiency (∼42%) and carbon conversion efficiency (∼72%) as ER maximized to 0.35 which was found optimum for this feedstock for the present course of experiments. Gasification parameters of wheat straw pellets on the other hand were characterized by a great degree of variation as the ER progressively increased. The optimum performance of this biomass was likely to achieve at ER = 0.30 when gas lower heating value and cold gas efficiency maximized to ∼4 MJ/Nm3 and ∼37% respectively. Moreover, a substantial drop in tar yield (58.7 g/Nm3) at this ER was also indicative to the optimal thermal conversion at this point of operation. Overall, both the feedstocks presented promising alternatives for utilization into the small-scale fluidized bed gasification which is increasingly emerging as a sustainable solution towards processing lignocellulosic biomass.