Published in

Elsevier, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 10(1843), p. 2284-2306, 2014

DOI: 10.1016/j.bbamcr.2014.03.010

Links

Tools

Export citation

Search in Google Scholar

New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

: Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and on core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, have intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalogue of criteria for evaluating Ca(2+) indicators that should be made available for each probe. This invited review article is part of the special issue 'Calcium signaling as a hub for translational medicine and a starting point to model life'. (275 words).