Published in

Wiley, Chemistry - A European Journal, 5(20), p. 1279-1286, 2014

DOI: 10.1002/chem.201303533

Links

Tools

Export citation

Search in Google Scholar

From Homoconjugated Push-Pull Chromophores to Donor-Acceptor-Substituted Spiro Systems by Thermal Rearrangement

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Series of homoconjugated push-pull chromophores and donor-acceptor (D-A)-functionalized spiro compounds were synthesized, in which the electron-donating strength of the anilino donor groups was systematically varied. The structural and optoelectronic properties of the compounds were investigated by X-ray analysis, UV/Vis spectroscopy, electrochemistry, and computational analysis. The homoconjugated push-pull chromophores with a central bicyclo[4.2.0]octane scaffold were obtained in high yield by [2+2] cycloaddition of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) to N,N-dialkylanilino- or N,N-diarylanilino-substituted activated alkynes. The spirocyclic compounds were formed by thermal rearrangement of the homoconjugated adducts. They also can be prepared in a one-pot reaction starting from DDQ and anilino-substituted alkynes. Spiro products with N,N-diphenylanilino and N,N-diisopropylanilino groups were isolated in high yields whereas compounds with pyrrolidino, didodecylamino, and dimethylamino substituents gave poor yields, with formation of insoluble side products. It was shown by in situ trapping experiments with TCNE that cycloreversion is possible during the thermal rearrangement, thereby liberating DDQ. In the low-yielding transformations, DDQ oxidizes the anilino species present, presumably via an intermediate iminium ion pathway. Such a pathway is not available for the N,N-diphenylanilino derivative and, in the case of the N,N-diisopropylanilino derivative, would generate a strained iminium ion (A1,3 strain). The mechanism of the thermal rearrangement was investigated by EPR spectroscopy, which provides good evidence for a proposed biradical pathway starting with the homolytic cleavage of the most strained (CN)CC(CN) bond between the fused four- and six-membered rings in the homoconjugated adducts.