Published in

Elsevier, Experimental Parasitology, (137), p. 25-34, 2014

DOI: 10.1016/j.exppara.2013.12.001

Links

Tools

Export citation

Search in Google Scholar

A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential roles in many organisms. In arthropods these proteins are involved in innate immune system, morphogenesis and development. In mammals serpins regulate pathways that are essential to life such as blood coagulation, fibrinolysis, inflammation and complement activation, some of which are considered the host's first line of defense to hematophagous and/or blood dueling parasites. Thus, it is hypothesized that ticks use serpins to evade host defense, facilitating parasitism. This study describes eighteen full-length cDNA sequences encoding serpins identified in Rhipicephalus (Boophilus) microplus, here named RmS 1-18 (R. microplus Serpin). Spatial and temporal transcriptional profiling demonstrated that R. microplus serpins are transcribed during feeding, suggesting their participation in tick physiology regulation. We speculate that the majority of R. microplus serpins are conserved in other ticks, as indicated by phylogeny analysis. Over half of the 18 RmSs are putatively functional in the extracellular environment, as indicated by putative signal peptides on 11 of 18 serpins. Comparative modeling and structural-based alignment revealed that R. microplus serpins in this study retain the consensus secondary of typical serpins. This descriptive study enlarges the knowledge on the molecular biology of R. microplus, an important tick species.