Published in

American Astronomical Society, Astrophysical Journal Letters, 1(793), p. L11, 2014

DOI: 10.1088/2041-8205/793/1/l11

Links

Tools

Export citation

Search in Google Scholar

Full Particle Electromagnetic Simulations of Entropy Generation across a Collisionless Shock

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Experimental data from Cluster have shown that entropy density can be generated across Earth's bow shock. These new observations are a starting point for a more sophisticated analysis that includes computer modeling of a collisionless shock using observed shock parameters as input. In this Letter, we present the first comparison between observations and particle-in-cell simulations of such entropy generation across a collisionless shock. The ion heating at the shock is dominated by the phase mixing of reflected and directly transmitted ions, which are separated from the incident ions. The electron heating is a nearly thermal process due to the conservation of their angular momentum. For both species, we calculate the entropy density across the shock, and obtain good consistency between observations and simulations on entropy generation across the shock. We also find that the entropy generation rate is reduced as the shock Mach number decreases.