Springer Verlag, Journal of Elasticity, 2(118), p. 243-250
DOI: 10.1007/s10659-014-9483-4
Full text: Download
The scale-dependent homogenization is applied to a hyperbolic thermoelastic material with two relaxation times, where conductivity and stiffness are wide-sense stationary ergodic random fields. The previously established scaling functions for the Fourier-type conductivity and linear elastic responses are used to describe the trends to scale from the mesoscale statistical volume element level (SVE) to the (representative volume element) RVE level of a deterministic homogeneous continuum. In the case of white-noise type random fields, this finite-size scaling can be quantified via universally appearing stretched exponentials for conductivity and elasticity problems.