Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 1(301), p. H79-H86, 2011

DOI: 10.1152/ajpheart.00864.2010

Links

Tools

Export citation

Search in Google Scholar

Adiponectin opposes endothelin-1-mediated vasoconstriction in the perfused rat hindlimb

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies have shown that adiponectin is able to increase nitric oxide (NO) production by the endothelium and relax preconstricted isolated aortic rings, suggesting that adiponectin may act as a vasodilator. Endothelin-1 (ET-1) is a potent vasoconstrictor, elevated levels of which are associated with obesity, type 2 diabetes, hypertension, and cardiovascular disease. We hypothesized that adiponectin has NO-dependent vascular actions opposing the vasoconstrictor actions of ET-1. We studied the vascular and metabolic effects of a physiological concentration of adiponectin (6.5 μg/ml) on hooded Wistar rats in the constant-flow pump-perfused rat hindlimb. Adiponectin alone had no observable vascular activity; however, adiponectin pretreatment and coinfusion inhibited the increase in perfusion pressure and associated metabolic stimulation caused by low-dose (1 nM) ET-1. Adiponectin was not able to oppose vasoconstriction when infusion was commenced after ET-1. This is in contrast to the NO donor sodium nitroprusside, which significantly reduced the pressure due to established ET-1 vasoconstriction, suggesting dissociation of the actions of adiponectin and NO. In addition, adiponectin had no effect on vasoconstriction caused by either high-dose (20 nM) ET-1 or low-dose (50 nM) norepinephrine. Our findings suggest that adiponectin has specific, apparently NO-independent, vascular activity to oppose the vasoconstrictor effects of ET-1. The hemodynamic actions of adiponectin may be an important aspect of its insulin-sensitizing ability by regulating access of insulin and glucose to myocytes. Imbalance in the relationship between adiponectin and ET-1 in obesity may contribute to the development of insulin resistance and cardiovascular disease.