Published in

Frontiers Media, Frontiers in Pharmacology, (6), 2015

DOI: 10.3389/fphar.2015.00165

Links

Tools

Export citation

Search in Google Scholar

Heme oxygenase induction attenuates TNF-α-induced hypertension in pregnant rodents

Journal article published in 2015 by Eric M. George, Jacob M. Stout, David E. Stec, Joey P. Granger
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Pre-eclampsia is a hypertensive disorder of pregnancy initiated by placental insufficiency and chronic ischemia. In response, several pathways activated in the placenta are responsible for the maternal syndrome, including increased production of the anti-angiogenic protein, sFlt-1, and inflammatory cytokines, especially tumor necrosis factor-alpha (TNF-α). Previous studies have demonstrated that heme oxygenase (HO) induction can block TNF-α pathways in vitro and attenuate placental ischemia-induced sFlt-1 in vivo. Here, we investigated whether HO-1 induction could attenuate TNF-α-induced hypertension in pregnant rats. In response to TNF-α infusion (100 ng/day i.p.), maternal mean arterial pressure (MAP) increased vs. control animals (104 ± 3 vs. 119 ± 3 mmHg). HO-1 induction had no effect in control animals, but significantly decreased MAP in TNF-α-infused animals (108 ± 2 mmHg). Placental vascular endothelial growth factor (VEGF) was decreased in response to TNF-α infusion (92 ± 4 vs. 76 ± 2 pg/mg). Placental sFlt-1 was increased by TNF-α infusion (758 ± 45 vs. 936 ± 46 pg/mg, p < 0.05), which trended to normalization by HO-1 induction (779 ± 98 pg/mg). In contrast, HO-1 induction had no significant effect on placental VEGF in TNF-α-infused animals. Taken together, these data suggest that one of the key mechanisms by which HO exerts cytoprotective actions in the placenta during inflammation due to chronic ischemia is through suppression of sFlt-1. Further work elucidating the bioactive metabolites of HO-1 in innate inflammatory responses to placental ischemia is warranted.