Published in

Elsevier, Procedia Engineering, 1(2), p. 657-666, 2010

DOI: 10.1016/j.proeng.2010.03.071

Links

Tools

Export citation

Search in Google Scholar

Investigation of localized damage in single crystals subjected to thermalmechanical fatigue (TMF)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The deformation and damage mechanisms arising during thermalmechanical fatigue (TMF) of a CMSX-4 and high-Cr single crystal super alloy, SCA425 have been investigated and a completely new failure mechanism involving recrystallization and oxidation has been discovered. The primary deformation mechanism is slip along the {111}{111} planes. The deformation is highly localised to a number of bands, where recrystallization eventually occur during the thermalmechanical fatigue process. When the final failure occurs along these recrystallized bands it is accompanied by the formation of voids due to the presence of grain boundaries. The damage process is further enhanced by oxidation, since recrystallization occurs more easily in the γ′γ′ depleted zone under the oxide scale. The macroscopic as well as the microscopic damage and fracture mechanisms are varying with alloy and heat treatment. The aim of this work is to further investigate, discuss the local damage mechanisms responsible for TMF damage. Of special interest is the localisation of damage into twins and extremely localized rafted deformation bands.