Published in

Wiley, Environmental Microbiology, 3(15), p. 764-779, 2012

DOI: 10.1111/1462-2920.12031

Links

Tools

Export citation

Search in Google Scholar

Friend or foe: genetic and functional characterization of plant endophyticPseudomonas aeruginosa

Journal article published in 2012 by A. Kumar, A. Munder, R. Aravind, S. J. Eapen ORCID, B. Tümmler, J. M. Raaijmakers ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endophytic Pseudomonas aeruginosa strain BP35 was originally isolated from black pepper grown in the rain forest in Kerala, India. Strain PaBP35 was shown to provide significant protection to black pepper against infections by Phytophthora capsici and Radopholus similis. For registration and implementation in disease management programmes, several traits of PaBP35 were investigated including its endophytic behaviour, biocontrol activity, phylogeny and toxicity to mammals. The results showed that PaBP35 efficiently colonized black pepper shoots and displayed a typical spatiotemporal pattern in its endophytic movement with concomitant suppression of Phytophthora rot. Confocal laser scanning microscopy revealed high populations of PaBP35::gfp2 inside tomato plantlets, supporting its endophytic behaviour in other plant species. Polyphasic approaches to genotype PaBP35, including BOX-PCR, recN sequence analysis, multilocus sequence typing and comparative genome hybridization analysis, revealed its uniqueness among P. aeruginosa strains representing clinical habitats. However, like other P. aeruginosa strains, PaBP35 exhibited resistance to antibiotics, grew at 25-41°C and produced rhamnolipids and phenazines. PaBP35 displayed strong type II secretion effectors-mediated cytotoxicity on mammalian A549 cells. Coupled with pathogenicity in a murine airway infection model, we conclude that this plant endophytic strain is as virulent as clinical P. aeruginosa strains. Safety issues related to the selection of plant endophytic bacteria for crop protection are discussed.