American Institute of Physics, Review of Scientific Instruments, 2(85), p. 023104
DOI: 10.1063/1.4864298
Full text: Download
We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10 5-108 photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10 12-1015 photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound. © 2014 AIP Publishing LLC.