Published in

American Geophysical Union, Water Resources Research, 9(44), 2008

DOI: 10.1029/2007wr006331

Links

Tools

Export citation

Search in Google Scholar

Agricultural green and blue water consumption and its influence on the global water system

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

1] This study quantifies, spatially explicitly and in a consistent modeling framework (Lund-Potsdam-Jena managed Land), the global consumption of both ''blue'' water (withdrawn for irrigation from rivers, lakes and aquifers) and ''green'' water (precipitation) by rainfed and irrigated agriculture and by nonagricultural terrestrial ecosystems. In addition, the individual effects of human-induced land cover change and irrigation were quantified to assess the overall hydrological impact of global agriculture in the past century. The contributions to irrigation of nonrenewable (fossil groundwater) and nonlocal blue water (e.g., from diverted rivers) were derived from the difference between a simulation in which these resources were implicitly considered (IPOT) and a simulation in which they were neglected (ILIM). We found that global cropland consumed >7200 km 3 year À1 of green water in 1971–2000, representing 92% (ILIM) and 85% (IPOT), respectively, of total crop water consumption. Even on irrigated cropland, 35% (ILIM) and 20% (IPOT) of water consumption consisted of green water. An additional 8155 km 3 year À1 of green water was consumed on grazing land; a further $44,700 km 3 year À1 sustained the ecosystems. Blue water consumption predominated only in intensively irrigated regions and was estimated at 636 km 3 year À1 (ILIM) and 1364 km 3 year À1 (IPOT) globally, suggesting that presently almost half of the irrigation water stemmed from nonrenewable and nonlocal sources. Land cover conversion reduced global evapotranspiration by 2.8% and increased discharge by 5.0% (1764 km 3 year À1), whereas irrigation increased evapotranspiration by up to 1.9% and decreased discharge by 0.5% at least (IPOT, 1971–2000). The diverse water fluxes displayed considerable interannual and interdecadal variability due to climatic variations and the progressive increase of the global area under cultivation and irrigation.